Real-time gesture recognition from depth data through key poses learning and decision forests

Leandro Miranda

Thales Vieira (presenter) Dimas Martinez *Mathematics, UFAL* 

Thomas Lewiner Mathematics, PUC-Rio Antonio W. Vieira Mario F. M. Campos *Computer Science, UFMG* 





Miranda et al., 2012



Miranda et al., 2012









Microsoft Kinect Sensor



#### Development of high quality Natural User Interfaces (NUI)

Miranda et al., 2012



# Challenging task! Gestures performed at different speeds and/or sequence of poses

Miranda et al., 2012

# Our approach: key poses learning



Gestures can be characterized by a few extreme poses!

Real-time gesture learning and recognition
Ideal for the average inexperienced user

Miranda et al., 2012

# Outline



Miranda et al., 2012

### **Related Work**



Miranda et al., 2012

#### Global methods



Lv and Nevatia (2007)

#### Parametric methods



### Overview



Miranda et al., 2012

# Overview: training key poses



# Overview: recognizing key poses



# Overview: recognizing key poses



Miranda et al., 2012

# **Overview: training gestures**



# **Overview: training gestures**



# **Overview: training gestures**



Miranda et al., 2012





Miranda et al., 2012



Miranda et al., 2012



Miranda et al., 2012

### Overview



Miranda et al., 2012

### Overview



Miranda et al., 2012

### **Skeletons from Kinect Sensor**





Real-time depth sensing system streaming depth data and skeletons at 30fps

Miranda et al., 2012

## Joint-Angles Pose Descriptor



**Objective**: Concise and invariant representation of relevant pose information.

Improvement of Raptis et al (2011) local spherical coordinates.



Ist degree joints: elbows, knees and head 2nd degree joints: hands, feet.

Miranda et al., 2012

# How to compute the local bases?

Ist degree joints:





# How to compute the local bases?



Ist degree joints:



Miranda et al., 2012



Miranda et al., 2012

# How to compute the local bases?





pose descriptor extraction  $\overbrace{(\theta_1,\varphi_1,\cdots,\theta_9,\varphi_9,\eta)}$ 

# How to compute the local bases?

2nd degree joints:



pose descriptor extraction  $\overbrace{kinect} (x_1, \cdots, x_{15}) \overbrace{(\theta_1, \varphi_1, \cdots, \theta_9, \varphi_9, \eta)}$ 







 $\theta$  - angle between rotated  $\vec{u}$  and  $\vec{q}$  $\varphi$  - angle between rotated  $\vec{t}$  and the projection of  $\vec{q}$  in  $\pi$ 

### Overview



Miranda et al., 2012

### Overview



Miranda et al., 2012

### Supervised Learning Machine



Predefined key pose classes:  $\mathcal{K} = \{k_1, k_2, \dots, k_{|\mathcal{K}|}\}$ 



Miranda et al., 2012

### Supervised Learning Machine



Predefined key pose classes:  $\mathcal{K} = \{k_1, k_2, \dots, k_{|\mathcal{K}|}\}$ 



Miranda et al., 2012

training

set

multi-class SVM

### Supervised Learning Machine

Predefined key pose classes:  $\mathcal{K} = \{k_1, k_2, \dots, k_{|\mathcal{K}|}\}$ 



training

set

multi-class

SVM

# Support Vector Machines (SVM)

Binary classifier

$$\begin{split} \hat{g} : \mathbb{R}^{k} \to \{-1, 1\} \\ v \to sign\left(\hat{f}(v)\right) &= \{-1, 1\} \\ \hat{f}(v) &= \sum_{j} \alpha_{j} \ s_{j} \langle \varphi\left(v_{j}\right), \varphi\left(v\right) \rangle + b \\ \underset{w, \gamma}{\text{MAX}} \quad \gamma - C \sum_{i=1}^{l} \varepsilon_{i} \\ \text{subject to} \quad y_{i} \langle w, \Phi(x_{i}) \rangle &\geq \gamma - \varepsilon_{i} \ , \varepsilon_{i} \geq 0 \ , \ \left\|w\right\|^{2} = \underbrace{x \times x \times x}_{x \times x}$$

Non-linear classification
Efficiently computed for small training sets

Miranda et al., 2012

### Multi-class SVM formulation

One-versus-all approach

One binary classifier for each key pose  $\mathbf{p} \in \mathcal{K}$ :  $\hat{f}_{\mathbf{p}}(\mathbf{v}) = \sum_{j \in SV} \alpha_j \psi_{\mathbf{p}}(\mathbf{c}_j) \ \phi(\mathbf{v}_j, \mathbf{v}) + b,$ 

where 
$$\psi_p(\mathbf{c}) = \begin{cases} 1 & \text{if } \mathbf{c} = \mathbf{p}, \\ -1 & \text{otherwise,} \end{cases}$$

$$\phi(\mathbf{v}_1, \mathbf{v}_2) = \exp\left(-\frac{\|\mathbf{v}_2 - \mathbf{v}_1\|^2}{2\sigma^2}\right)$$

Voting process:

$$\hat{f}(\mathbf{v}) = \begin{cases} \mathbf{q} = \arg \max_{\mathbf{p}} \hat{f}_{\mathbf{p}}(\mathbf{v}) & \text{if } \hat{f}_{\mathbf{q}}(\mathbf{v}) > 0, \\ -1 & \text{otherwise.} \end{cases}$$

Miranda et al., 2012



### Overview



Miranda et al., 2012

### Overview



Miranda et al., 2012

# Gestures as key pose sequences



Gesture representation:  $g = \{k_1, k_2, \cdots, k_{n_g}\}, k_i \in \mathcal{K}.$ 

# Gestures as key pose sequences



Gesture representation:  $g = \{k_1, k_2, \cdots, k_{n_g}\}, k_i \in \mathcal{K}.$ 

Training session:



# Gestures as key pose sequences



Gesture representation:  $g = \{k_1, k_2, \cdots, k_{n_g}\}, k_i \in \mathcal{K}.$ 



Miranda et al., 2012





Each node represents a key pose

- One tree per key pose
- Each root-leaf path represents a gesture stored back-to-front

Two paths may represent the same gesture









Miranda et al., 2012







Miranda et al., 2012





Miranda et al., 2012





Miranda et al., 2012









Miranda et al., 2012

gesture learning machine  $\begin{array}{c} \hline k_{1} & k_{2} & k_{3} & \\ \hline k_{2} & k_{3} & k_{4} & \\ \hline k_{3} & k_{4} & k_{4} & \\ \hline y_{3} & k_{5} & y_{2} & \\ \hline y_{3} & decision \ forest & \\ \hline \end{array}$ 







Miranda et al., 2012

gesture learning machine  $\begin{array}{c} \hline k_{1} \\ \hline k_{2} \\ \hline k_{3} \\ \hline k_{4} \\ \hline k_{4} \\ \hline k_{4} \\ \hline k_{5} \hline k_{5} \\ \hline k_{5} \hline k_{5} \\ \hline k_{5} \hline k_{5} \\ \hline k_{5} \hline k$ 



Miranda et al., 2012

gesture learning machine  $\begin{array}{c} \hline k_{1} \\ \hline k_{2} \\ \hline k_{3} \\ \hline k_{4} \\ \hline k_{4} \\ \hline k_{4} \\ \hline k_{5} \hline k_{5} \\ \hline k_{5} \hline k_{5} \\ \hline k_{5} \hline k_{5} \\ \hline k_{5} \hline k$ 



Miranda et al., 2012

gesture learning machine  $\begin{array}{c} \hline k_{1} \\ \hline k_{2} \\ \hline k_{3} \\ \hline k_{4} \\ \hline k_{4} \\ \hline k_{5} \hline k_{5} \\ \hline k_{5} \hline k_{5} \\ \hline k_{5} \hline k_{5} \\ \hline k_{5} \hline k$ 



Miranda et al., 2012

gesture learning machine  $\begin{array}{c} \hline k_{1} \\ \hline k_{2} \\ \hline k_{3} \\ \hline k_{4} \\ \hline k_{4} \\ \hline k_{5} \hline k_{5} \\ \hline k_{5} \hline k_{5} \\ \hline k_{5} \hline k_{5} \\ \hline k_{5} \hline k$ 



#### Time constraints



Time vector: interval  $\mathbf{t} = [t_1, t_2, \cdots, t_{n-1}]$ between consecutive key poses

Time test

for each time vector  $t_i$  found on the leaf if  $\|\mathbf{t}_i - \mathbf{t}\|_{\infty} > T$ discard  $t_i$ return  $g_i$  that minimizes  $\|\mathbf{t}_i - \mathbf{t}\|_1$ 



Miranda et al., 2012

### Results

Miranda et al., 2012

# **Experiment Setup**

One trainer

18 trained key poses (approx. 30 examples per key pose)

10 trained gestures (approx. 10 executions per gesture)



Miranda et al., 2012

# Key pose recognition: robustness

#### 10 inexperienced individuals performed trained key poses 10 times

| kev nose             | id       | recognized key poses per user |       |       |       |       |       |       |       | total |            |            |        |
|----------------------|----------|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------------|------------|--------|
| key pose             | IG       | $u_1$                         | $u_2$ | $u_3$ | $u_4$ | $u_5$ | $u_6$ | $u_7$ | $u_8$ | $u_9$ | $u_{10}^1$ | $u_{10}^2$ | (%)    |
| Neutral              | $k_1$    | 10                            | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10         | 10         | 100.00 |
| Right Hand Right     | $k_2$    | 10                            | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10         | 8          | 98.18  |
| Left Hand Left       | $k_3$    | 10                            | 10    | 10    | 9     | 10    | 10    | 9     | 10    | 10    | 10         | 10         | 98.18  |
| Arms Open            | $k_4$    | 10                            | 10    | 10    | 7     | 10    | 10    | 10    | 9     | 10    | 7          | 10         | 93.63  |
| Right Hand Front     | $k_5$    | 10                            | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 8          | 7          | 95.45  |
| Left Hand Front      | $k_6$    | 10                            | 10    | 9     | 10    | 10    | 10    | 10    | 10    | 10    | 10         | 10         | 99.09  |
| Both Hands Front     | $k_7$    | 10                            | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10         | 10         | 100.00 |
| Right Hand Up        | $k_8$    | 10                            | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10         | 10         | 100.00 |
| Left Hand Up         | $k_9$    | 10                            | 10    | 10    | 10    | 10    | 9     | 10    | 10    | 10    | 9          | 10         | 98.18  |
| Both Hands Up        | $k_{10}$ | 10                            | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10         | 10         | 100.00 |
| Right Hand 90°       | $k_{11}$ | 10                            | 8     | 9     | 10    | 10    | 10    | 10    | 10    | 8     | 10         | 10         | 95.45  |
| Left Hand 90°        | $k_{12}$ | 10                            | 10    | 10    | 10    | 10    | 6     | 10    | 10    | 10    | 5          | 10         | 91.81  |
| Both Hands 90°       | $k_{13}$ | 10                            | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10         | 10         | 100.00 |
| Inclined Front       | $k_{14}$ | 8                             | 10    | 10    | 10    | 10    | 8     | 10    | 10    | 10    | 5          | 7          | 89.09  |
| Hands-on-Hip Crossed | $k_{15}$ | 7                             | 8     | 6     | 8     | 8     | 10    | 10    | 10    | 8     | 10         | 8          | 84.54  |
| Hand-On-Hip          | $k_{16}$ | 10                            | 10    | 10    | 10    | 10    | 10    | 10    | 9     | 10    | 10         | 10         | 99.09  |
| Hands on Head        | $k_{17}$ | 9                             | 10    | 10    | 8     | 10    | 10    | 9     | 7     | 10    | 10         | 6          | 90.00  |
| Right Hand 90° Back  | $k_{18}$ | 8                             | 10    | 9     | 6     | 7     | 7     | 7     | 10    | 10    | 3          | 8          | 77.27  |
| total (%)            |          | 95.5                          | 97.7  | 96.1  | 93.3  | 97.2  | 94.4  | 97.2  | 97.2  | 97.7  | 87.2       | 91.11      |        |

#### Average recognition rate: <u>94.84%</u>

Miranda et al., 2012

# Key pose recognition: stability

Out-of-sample tests:

I.Remove 20% of training set data;2.Compute SVM classifier;3.Try to classify removed training data.

Results after 10 experiments:

False classifications: <u>4.16%</u>

Unclassified key poses: <u>3.45%</u>

Miranda et al., 2012

### Key pose recognition



Miranda et al., 2012

# Gesture recognition

#### 10 inexperienced individuals performed trained gestures 10 times

| gesture                                             | id       | key pose seq.                                         | rec. rate |
|-----------------------------------------------------|----------|-------------------------------------------------------|-----------|
| Open-Clap                                           | $g_1$    | $k_1, k_4, k_7$                                       | 99%       |
| Open Arms                                           | $g_2$    | $k_1, k_7, k_4$                                       | 96%       |
| Turn Next Page                                      | $g_3$    | $egin{array}{cccccccccccccccccccccccccccccccccccc$    | 83%       |
| Turn Previous Page                                  | $g_4$    | $egin{array}{cccccccccccccccccccccccccccccccccccc$    | 91%       |
| Raise Right Arm Laterally                           | $g_5$    | $k_1, k_2, k_8$                                       | 80%       |
| Lower Right Arm Laterally                           | $g_6$    | $k_8, k_2, k_1$                                       | 78%       |
| Good Bye $(k_{11} \text{ time constraint: 1 sec.})$ | $g_7$    | $k_1, k_{11}$                                         | 92%       |
| Japanese Greeting                                   | $g_8$    | $k_1, k_{14}, k_1$                                    | 100%      |
| Put Hands Up Front                                  | $g_9$    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 96%       |
| Put Hands Up Laterally                              | $g_{10}$ | $k_1, k_4, k_{10}$                                    | 100%      |

Miranda et al., 2012

### Gesture recognition



Miranda et al., 2012

### Performance

Preprocessing bottleneck: computing SVM classifiers

#### For a training set of 2,000 key pose examples of 18 classes: 18 functions were computed in 3.9 secs

Negligible performance during training/recognition phases



#### Usually very low tree depths

Miranda et al., 2012

## Comparison

Dataset from Li et al (2010): 20 gestures, 10 individuals, 3 executions

| AS1                 | AS2           | AS3            |
|---------------------|---------------|----------------|
| Horizontal arm wave | High arm wave | High throw     |
| Hammer              | Hand catch    | Forward kick   |
| Forward punch       | Draw x        | Side kick      |
| High throw          | Draw tick     | Jogging        |
| Hand clap           | Draw circle   | Tennis swing   |
| Bend                | Two hand wave | Tennis serve   |
| Pickup & throw      | Side boxing   | Pickup & throw |
|                     |               |                |

#### Cross-subject test:

|   | Gesture subset | Li [10] | Vieira [15] | our method |
|---|----------------|---------|-------------|------------|
| - | AS1            | 72.9%   | 84.7%       | 93.5%      |
| - | AS2            | 71.9%   | 81.3%       | 52.0%      |
| - | AS3            | 79.2%   | 88.4%       | 95.4%      |
| - | Average        | 74.7%   | 84.8%       | 80.3%      |

Miranda et al., 2012

## Comparison

Dataset from Li et al (2010): 20 gestures, 10 individuals, 3 executions

| AS1                 | AS2           | AS3            |
|---------------------|---------------|----------------|
| Horizontal arm wave | High arm wave | High throw     |
| Hammer              | Hand catch    | Forward kick   |
| Forward punch       | Draw x        | Side kick      |
| High throw          | Draw tick     | Jogging        |
| Hand clap           | Draw circle   | Tennis swing   |
| Bend                | Two hand wave | Tennis serve   |
| Pickup & throw      | Side boxing   | Pickup & throw |

#### Cross-subject test:

| Gesture subset | Li [10] | Vieira [15] | our method | Delicate gestures |
|----------------|---------|-------------|------------|-------------------|
| AS1            | 72.9%   | 84.7%       | 93.5%      |                   |
| AS2            | 71.9%   | 81.3%       | 52.0%      |                   |
| AS3            | 79.2%   | 88.4%       | 95.4%      |                   |
| Average        | 74.7%   | 84.8%       | 80.3%      |                   |

Miranda et al., 2012

### Limitations

Robustness issues

Skeleton tracking

Delicate gestures

• Key pose design not the friendliest solution



Miranda et al., 2012

### Future Work

 $\checkmark$  Automatic key pose generation

Work on skeleton tracking algorithms (More than I Kinect?)

Improve time constrained gesture recognition

 $\checkmark$  Take into account key pose descriptor periodicity

Miranda et al., 2012

# Thank you for your attention!

# Thank you for your attention!

# Thank you for your attention!



Miranda et al., 2012